1.EVA指标。调整和计算研究样本的EVA数据,并以此为基础确定EVA指标,即用EVA代替传统净利润确定相关的财务比率,从而提高预警指标的准确性[4]。EVA指标主要有:修正销售净利率K1(即EVA/营业收入)、修正主营业务净利率K2(即EVA/主营业务收入)、修正净资产收益率K3(即EVA/所有者权益)、修正总资产收益率K4(即EVA/总资产)。
2.传统财务指标。根据我国上市公司财务危机的特征,综合前人的研究成果,本文选择了20个传统财务指标,涵盖了公司的偿债能力、营运能力、盈利能力、获现能力以及发展能力,综合反映公司的整体状况。其中偿债能力指标包括:流动比率X1、速动比率X2、现金流量比率X3、资产负债率X4、产权比率X5、利息保障倍数X6;营运能力指标包括:存货周转率X7、应收账款周转率X8、流动资产周转率X9、固定资产周转率X10、总资产周转率X11;盈利能力指标包括:主营业务毛利率X12、成本费用利润率X13;获现能力指标包括:经营活动现金流入流出比率X14、经营活动现金净流量增长率X15、每股经营活动净现金流量X16;发展能力指标包括:主营业务收入增长率X17、营业利润增长率X18、净资产增长率X19、总资产增长率X20。
二、实证分析
(一)正态性检验
本文使用Kolmogorov一Smirnov拟合优度的检验方法,将样本数据的累计频数分布与正态分布进行对比,以确定预警指标是否服从正态分布。将EVA指标和传统财务指标进行K-S检验,检验结果为:在95%的置信水平上,资产负债率X4、每股经营活动净现金流量X16这两个指标的双侧渐近显著性值都大于0.05,故推断其服从正态分布,其余22个指标均不服从正态分布。
通过正态性检验,确定各个指标服从的分布情况,为下文的显著性检验奠定了基础:对于服从正态分布的指标采用T检验的方法进行显著性检验,对于不服从正态分布的指标采用非参数检验的方法进行显著性检验。据此确定各指标在预警过程中是否具有显著性,将显著的指标予以保留,组成最终的财务预警指标体系,作为构建财务预警模型的初始数据。
(二)显著性检验
1.T检验。对服从正态分布的两个指标进行T检验,综合方差方程和均值方程的t检验结果,在95%的置信水平上,资产负债率X4通过了T检验,表明ST公司与非ST公司在长期偿债能力方面存在显著差异;而每股经营活动净现金流量X16这一指标未能通过T检验,表明ST公司与非ST公司在现金流量方面不存在显著差异。
2.非参数检验。对不服从正态分布的22个指标进行非参数检验,采用Mann-Whitney U检验的方法,检验两个样本的总体在某些特定位置上是否相等。检验结果为:在95%的置信水平上,现金流量比率X3、存货周转率X7、固定资产周转率X10、总资产周转率X11、经营活动现金流入流出比率X14、主营业务收入增长率X17这6个指标未能通过非参数检验,应当予以剔除;其余通过非参数检验的16个指标,则予以保留。
综合T检验和非参数检验的结果,符合正态分布且T检验具有显著性的1个预警指标,不符合正态分布但非参数检验具有显著性的16个预警指标,总计17个显著的指标,组成最终的财务预警指标体系,作为构建预警模型的初始数据。
(三)因子分析
使用主成分法提取初始变量的公因子,以分析变量的相关矩阵作为提取公因子的依据,指定各公因子的最小特征值为1,通过因子分析发现提取6个公因子能够解释初始变量所包含72.65%的信息,因子得分系数如表1所示。
综合T检验和非参数检验的结果,符合正态分布且T检验具有显著性的1个预警指标,不符合正态分布但非参数检验具有显著性的16个预警指标,总计17个显著的指标,组成最终的财务预警指标体系,作为构建预警模型的初始数据。
(三)因子分析
使用主成分法提取初始变量的公因子,以分析变量的相关矩阵作为提取公因子的依据,指定各公因子的最小特征值为1,通过因子分析发现提取6个公因子能够解释初始变量所包含72.65%的信息,因子得分系数如表1所示。