【摘 要】 将EVA指标引入财务预警,以2010—2014年我国沪深两市A股首次被ST的上市公司作为研究样本,分别构建引入EVA指标的Logistic回归模型与Fisher判别模型,通过模型对比发现:Logistic回归模型的预警准确率明显高于Fisher判别模型的预警准确率。
【关键词】 财务预警; EVA; Logistic回归分析; Fisher判别分析
随着我国资本市场的迅速发展,上市公司面临的财务风险日益突出,迫切需要进行有效的财务预警。现阶段对财务预警的研究主要采用实证分析的方法,通过构建预警模型来识别潜在的财务危机,应用较为广泛的是Logistic回归模型以及Fisher判别模型,本文分别构建基于Logistic回归分析和Fisher判别分析的预警模型,通过对二者的预警过程及效果进行对比,确定更为准确的预警模型,为上市公司财务预警提供一定的参考。
在构建财务预警模型过程中,指标体系对最终的判定准确率具有显著影响,因此,预警指标的选择显得尤为重要。然而传统财务指标在预警过程中却存在很多不足,例如,忽视权益资本成本、过度注重短期业绩、易受人为操纵等,所以仅靠传统财务指标难以完全满足财务预警的目的。国内外学者针对此类问题也在不断研究和探索,涌现出了许多新方法,如引入新的预警指标、利用非财务信息、构建时间序列等,其中,引入EVA指标就是一种新的思维与尝试[1]。
EVA实质是对剩余收益的扩展和延伸,被定义为税后净经营利润(Net Operating Profit After Tax,NOPAT)与资本成本(Capital Charge,CC)之间的差额。尽管EVA的定义较为简单,但实际的计算和调整过程却很复杂,调整项目多达160项。国内很多学者对我国现行企业会计准则下EVA计算体系进行研究发现,通过对研发费用、战略性投资、无息流动负债、折旧费用、各种准备金、重组费用、商誉、所得税等主要事项的调整,能够得出较为准确的EVA数据[2]。因此,本文在研究过程中通过对上述主要事项的计算和调整来确定上市公司的EVA数据。
一、引入EVA指标的财务预警研究设计
(一)样本选取
本文选取2010—2014年我国证券市场A股首次被ST的上市公司作为目标样本,合计103家,其中被注册会计师出具否定意见或者无法表示意见的有4家;其他状况异常导致被ST的上市公司有10家;无法找到同时期、同行业、同规模配对样本的上市公司有22家,剔除由于以上原因导致被ST的公司后,剩余67家上市公司作为本文的目标样本。此外,按照1:1的配对比例,选择同时期、同行业、同规模的67家非ST上市公司作为配对样本,合计134家上市公司作为最终的研究样本[3]。
(二)数据的时间范围
根据我国证监会上市交易规则,假定上市公司由于财务状况异常在第t年被特别处理,那么它在t-1、t-2年连续两年经审计的净利润为“负值”,如果仍然使用t-1、t-2这两年的财务数据构建预警模型,模型的准确性将会被严重高估。因此,应至少选择t-3年的数据构建预警模型。关于预警年度的问题,何沛俐和章早立[5]对时序样本进行了详尽的实证分析,发现如果在第t-4年进行财务预警,ST公司与非ST公司之间的差异是不显著的。综合来看,本文选择t-3年的样本数据进行财务预警,以更为真实地反映模型的预警效果。
(三)指标体系的构建