摘 要 焊接工艺对焊接质量起着决定性的作用,焊接工艺参数的优化问题非常重要却又很复杂。通常焊接工作者为了获得合适的焊接工艺参数,必须在焊接作业前进行多次焊接试验,然后进行焊接工艺评定,最后才能获得合理的工艺参数。本文是利用人工神经网络结合正交试验以及简单数学计算对电阻焊焊接工艺参数进行优化。
关键词 神经网络 动力电池组 焊接 参数优化
0引言
传统焊接会消耗大量的人力、物力、财力。为适应生产实际对焊接工艺优化的需要,人们希望利用最少的试验次数和实验数据,建立焊接工艺参数与焊接结果之间的关系模型,用来指导焊接生产。传统的焊接工艺优化方法主要有:正交试验法、因子设计响应曲面法以及回归分析法等,但这些方法存在计算复杂、工作量大、知识获取困难和自学习能力差等问题。随着智能工程的发展,出现了基于遗传算法、模糊算法和神经网络等的工艺参数优化,很好地解决了这些问题。本文是利用人工神经网络结合正交试验以及简单数学计算对电阻焊焊接工艺参数进行优化。
1焊接工艺数据的选择以及正交试验表的建立
1.1激光焊接工艺参数的选择
选择不同电阻焊焊接参数范围以及对应的焊点抗拉强度值作为神经网络训练样本。
1.1.1焊接电流
焊接电流是微型电阻焊中最具影响力的参数,由焦耳热定律可知,焊接过程的总析热量与电流的平方成正比。一般而言,接头强度随着焊接电流的增加而增大,但过高的电流会软化热影响区,导致焊接飞溅、电极粘连甚至损毁。
1.1.2焊接时间
焊接时间与产热量成正比。由于焊件尺寸的差异,微型电阻焊应用的焊接时间通常短于常规电阻焊,典型值为几十毫秒,更短的甚至只有几毫秒(如电容储能式电源)。由于热量向外传递和辐射损失,为使得焊接成功必须规定最小的焊接电流和焊接时间。
1.1.3电极压力
电极压力主要通过对接触面积和接触电阻的影响来作用电阻焊过程。在其他焊接条件不变的情况下,加大电极压力会使得两焊件实际接触面积增加,使接触电阻和电流密度减小,从而使熔核尺寸变小。
本文选用电极压力(N)、焊接时间(S)、焊接电流(KA)作为控制焊缝强度的三个主要焊接工艺参数,焊缝抗拉强度试验指标(N)作为评价焊点性能的主要指标。电极压力(N)、焊接时间(S)、焊接电流(KA)作为正交试验的三个因素,根据实验需求选取L9(34)正交试验表。