手机版
欢迎光临汇博在线http://www.paper188.com
您的位置:汇博论文在线 > 理工论文 > 自动化 > 基于模糊时间序列的车辆检测器数据修补方法研究

基于模糊时间序列的车辆检测器数据修补方法研究

2016-07-14 10:33 来源: 互联网 作者:隆忠华 王祥 浏览次数 2658


  本研究使用SPSS18.0的ARIMA预测模型,将西安绕城高速车检器2014年1月1日至8月31日的流量数据切分为工作日与假日两种模式,具体研究步骤如下: 
  (1)利用自相关图(ACF)来判断是否为平稳数列。 
  (2)图 1所示为工作日模式下交通流量的自相关图,由图可见,滞后阶数为5时,才进入置信界内,表示流量数据并非为一个平稳的时间序列,需要对数据进行差分处理。 
  图 2所示为假日模式下交通流量的自相关图,在其滞后阶数为7时才进入了置信界限内,数据亦需要差分处理。具体操作如下: 
  (1)使用SPSS18.0中的Expert Modeler选出最佳ARIMA(p,d,q)模型,工作日模式下的最佳ARIMA(p,d,q)模型为ARIMA(0,1,1),假日模式下的最佳模型是ARIMA(1,1,1)。 
  (2)检查模型的R2与MAPE值是否能够充分解释变异数,BIC值是否最低并且残差是否符合白噪声的假设。 
  依照统计学的衡量标准,MAPE值小于20%时为优良的修补模型,而模型的BIC值则越小越好;R2表示模型的解释程度,R2值越高则解释变数的能力越高,表1所列为工作日模式的挑选准则,可以看出由Expert Modeler所得的模型四项准则皆为最优,比较的模型为符合残差接收白噪声假设的模型,其MAPE值为16.91%(越低越好),是三个模型里最好的,R2=0.938是最高的,代表可解释变数的程度最高,BIC值越小表示模型为最佳估计模型,其BIC值=4.92为三个模型中最低。而表2所示为假日模式的挑选准则,同样是由Expert Modeler挑选出最适模型为最优模型,ARIMA(1,1,1)各个适合度指标皆为最适,也都有符合残差接收白噪声,由此可知,可直接由Expert Modeler选取ARIMA的最适模型,不需要采用传统的方式将所有模型进行测试。 
  将建立好的工作日与假日流量ARIMA模型,选择输出一个完整日的流量数据来进行实际验证。工作日模式下ARIMA预测结果如图3所示。假日模式下ARIMA预测结果如图4所示。 
  1.3 结合模糊时间序列的ARIMA模型 
  首先建立一个将max-min简化的模糊时间序列模型,以车检器数据中9月1日17:00至19:00每5 min流量为例,预测一个小时的流量数据。示例流量数据表如表3所列。 
  (3)将时间分为24个子集合(A1、A2、…、A24)并计算各个集合的时间隶属度。 
  (4)使用加权平均法进行去模糊化计算。 
  (5)将工作日模式与假日模式下的ARIMA预测值与模糊时间序列的计算结果进行对比。工作日模式下ARIMA的MAPE值为16.907%,而工作日模式下混合模型的MAPE值为13.248%,对比可知混合模型效果较好。基于差分平稳化方法,本研究先以ARIMA模型使其收敛,这样能够比单使用ARIMA模型的效果好,而假日混合模型的MAPE值为10.698%,同样优于假日ARIMA模型的17.145%。可以发现假日模式的改善比工作日模式的改善幅度大,这种现象可以解释为工作日的流量变化较大,为一个双峰M型分布,而假日的流量图形基本为一个单峰分配,变化不剧烈,较符合模糊时间序列的梯度函数形态。工作日混合模式的函数形态如图5所示。假日混合模式的函数形态如图6所示。
[上一页1  2  3  4 [下一页]

服务说明

汇博在线(paper188.com)网拥有实力强大的团队,能帮助你实现论文写作方法,论文发表,代写代发论文等服务领域.

我们承诺

在您接受本站服务的过程中,我们为您提供优质的服务,包括后期免费修改、免费指导答辩等。衷心感谢您对本站的信任和支持!

论文指导范围

毕业论文,硕士毕业论文,研究生论文,博士论文,职称论文代写,领导讲话,报告总结,演讲致辞,心得体会,党团辅导等代写服务。

发表论文领域

发表省级杂志,国家级杂志,核心杂志等服务。