1.2.3 配电效率高
直流配电系统线路损耗比交流配电系统低,因为直流配电系统不会产生趋肤效应,也不会产生无功功率。直流配电系统的线路损耗集中在电力电子变换器上,而最新型号的直流变换器效率已经达到99%,并且随着半导体宽禁带电力电子器件的应用与快速发展,变换器效率还可以进一步提高。近些年,直流电负载越来越多,旋转式负荷、变频调速设备一同使用,为直流电技术提供了良好的使用需求。
2 直流配电系统设计构想
2.1 直流配电运行控制
变压器在交流配电系统和直流配电系统中都不可或缺,直流配电系统的内部电压等级转换同样依赖变压器等电能变换装置实现。直流配电系统电力电子变换装置结构形式多样,不同电压等级配电网、储能装置、分布式电源都需要借助变换器接入直连母线。直流配电系统变换器控制的基本要求有稳定性、容量、可靠性、冗余度、自动化、电压平稳以及优秀系统模块性能等方面。电压是直流配电系统的核心参数,是直流配电系统控制和运作的基本,直流配电系统控制的首要问题就是暂态与稳态工作状态下保持电压稳定。
2.2 网络结构优化
直流配电系统因为采用了不同的电能配送形式,其网络结构也和交流配电系统有较大的差别,建设并优化线路网络结构,是直流配电系统广泛应用和发展的关键。直流配电系统有着和交流配电系统类似的多级配电网络,彼此之间协调合作,其基本结构形式有闭环、辐射状和网状三种,不同的网络结构有着不同的建设成本和控制难易程度,需要根据应用情境和建设投资规模合理选择。我国交流配电网覆盖十分广泛,发展完善,拆除原有的交流配电网,大规模建设直流配电网是否值得还有待研究,理论上,应该首先积极建设交直流混合网,之后逐渐增加直流配电网规模,最后彻底取代交流配电网,这样的建设方式更加贴合实际。
2.3 直流配电开关/保护
开关在电力系统中的主要功能是分离故障线路区域,避免故障扩大,威胁其他区域正常线路和关键设备。直流电流没有自然过零点,因此分段难度大,导致直流开关设备技术难度远远高于交流系统,现阶段中低压直流配电开关已经能够实现数十千大容量直流开闭,但是设备造价十分昂贵,成本高,大规模应用难度很大。直流配电系统的故障类型和故障后果和交流配电系统相比都有着较大的不同,缺少相关研究资料和实践经验,可以肯定的是大量的电力电子装置会给直流配电系统的安全保护工作带来巨大挑战,如何充分发挥利用变换器快速通断能力,保护直流配电系统是直流配电系统需要首先解决的问题。
2.4 多级直流配电网络建设
直流配电系统同样需要设置多个电压等级控制线损,进行电能的远距离传输。多级直流配电网中多个不同电压等级的直流网之间相互协同,根据不同区域电能输送和分配需求进行电力调度,同时接入用户侧小型分布式电源和风力发电、太阳能发电大型分布式电源。直流网络不同级别直流电网相互解耦,故障电流能够利用电子电力变压器快速调节有效控制,从而进一步降低了直流配电网对开关的技术要求。当然现阶段全直流配电网技术不允许,但是配电网末端低压配电系统如进户线、楼宇供电系统已经能够直流传输。滞留多级配电网络直流母线电压等级更加安全,直接接在母线上的蓄电池效率更高,可靠性更好,而通过简单Buck 变化器接入系统的PV 电源变换效率更高,负极接地直流母线和220V 交流母线之间形成了有效的电位隔离,且直流母线和交流母线之间支持双向功率流动,PV 电源能量利用更加充分,交直流电负荷与供电可靠性都比较理想。
3 结语
直流配电系统能够进一步简化配电系统中的变换环节,从而进一步降低线损,获得更高的能源利用效率,研究直流配电系统,对全面提高配电运行效率、安全性、可靠性,降低故障率有着重要意义。