关键词:直流配电系统;技术;设计
0 引言
电力系统快速发展,传统的交流配电技术不再满足需求,为了进一步提高配电运作效率、安全性和可靠性,为用户输送更高质量的电能,关于直流配电技术的研究逐渐增多,研究直流配电系统技术和设计策略是配电技术发展的必然方向。
1 直流配电技术
核电、水电、火电等传统发电技术在提供丰富电能资源的同时以消耗自然资源和环境污染为代价,清洁能源如风力发电、太阳能发电更加得到重视,但是风力发电和太阳能发电输出容量低,分布分散,接入电网面临着较多的技术问题,使用架空线路输送交流配电网故障率比较高,供电范围的限制比较大,可控性不强,随着电力系统规模的不断扩大,交流配电技术的不足逐渐凸显。
1.1 直流配电技术现状
直流电力传输技术经过多年发展已经逐渐成熟,积累了丰富的建设和运行经验,国内外电力输送中都有着较为广泛的应用,很多场合甚至只能使用直流传输技术。而配电方面,早期直流换流器功耗大,造价高,限制了直流技术的发展和应用。而近些年,新型半导体材料发展迅速,尤其是碳化硅、氮化镓等半导体材料,显著降低传统半导体换流器件的功耗,为直流配电技术的应用和推广提供了技术基础。荷兰能源研究中心在1997 年就提出了住宅建筑的直流配电技术方案,国际能源机构和美国电力研究学会都表示高度重视,欧洲已经开始建设300V 直流体育场试验项目,日本政府和新能源产业技术开发机构也组织相关企业、大学,积极开展住宅直流电技术的研究,建设了许多直流配电技术示范住宅项目。我国台湾地区能源研究机构推出的“智慧型直流电力屋”功能使用了360V 额定电压直流电作为电力来源,德国亚琛大学的“City of Tomorrow”城市供电方案城市配电骨干线路为中低压直流环网,使用大功率AC/DC、DC/DC 获取交流输电网、直流输电网电能,为城市规模的直流配电技术应用提供了优秀模板。韩国有关低压直流微电网的研究集中在能量管理控制系统方面,使用PSCAD 模拟仿真,得出了一个科学的控制策略。国内关于直流配电技术的研究和应用主要包括大型发电厂升压变电站、高压变电站一次设备操作以及二次设备、通信设备电源等,除此之外,电信部门大型通信机房、船舶供电以及城市轨道交通供电也利用了直流供电技术。
1.2 直流配电技术优势
1.2.1 可靠性更高
直流配电技术可靠性高于相同电压等级的交流线路,双导线直流电路在直流配电系统正极线路故障时,负极会和大地形成闭合回路,将部分甚至全部功率输出,从而有效保护线路上的电气设备。单极、单相接地故障在所有故障中占据比例超过80%,相比之下,直流配电系统的故障响应速度更快,故障处理和恢复速度快,时间短,通过重复再启动、降压操作能够为处理故障提供良好的操作环境,电力电子变换器还能够将直流配电系统划分为若干独立区域,区域内故障不会影响其他区域的正常运行。
1.2.2 不存在频率稳定问题
交流配电系统配电运行需要考虑到频率、相位、电压幅值等多个技术参数,相比之下,直流配电系统只需要考虑电压幅值,配电运行操作更加简单直观。交流配电系统大电容电缆电能配送存在着电缆电容的充电情况,增加线路损耗,而影响线路输电容量。直流配电系统则无须考虑这些问题,同时还具有供电辐射范围广泛、电能质量高以及电源分布式互联等技术优势。